POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Electrical devices

Course

Field of study Year/Semester

Electrical Engineering 3/5

Area of study (specialization) Profile of study

Level of study Course offered in

general academic

First-cycle studies polish

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 15 0

Tutorials Projects/seminars

0

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Grzegorz Dombek, Ph. D., Eng.

Faculty of Environmental Engineering and

Energy

Institute of Electric Power Engineering

e-mail: grzegorz.dombek@put.poznan.pl

tel. 61 665 2192

Prerequisites

Basic knowledge on electrical engineering, mathematics, physics and electrical metrology. Able to perform mathematical analysis of simple electrical circuits, knows how to read electrical scheme. A sense of the need to broaden the competence and willingness to work together in a team.

Course objective

Knowledge of phenomena occurring in electrical devices and systems as well as their mathematical and physical descriptions. Purchase of skills in the application of phenomena description to design of power supply and hazard assessment that can occurs in these systems. Experiment planning, selection of measurement instrument, realization of test set-up, researches performing and results analyzing.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

Student knows how to characterize the phenomena occurring in power equipment and systems. Student is able to formulate a mathematical and physical description of phenomena.

Skills

Student is able to analyze the mathematical and physical description of phenomena for various states and conditions occurring in devices. Student is able to perform calculations and assess the hazards occurring in devices and systems supplying electricity to consumers. Student is able to plan and carry out the experiment.

Social competences

Student is aware of the impact of the correct selection of devices and analysis of phenomena to ensure the continuity of supplying electricity to various consumers. The student is aware of the impact of phenomena and devices on the environment and people working on and using power equipment and the resulting need for extensive cooperation at the design and operational stages.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture:

- knowledge acquired as part of the lecture is verified by a written final test consisting of open or test questions with different points. Passing threshold: 50% of points,
- current grading in each lecture (rewarding activities).

Laboratory classes:

- current check and rewarding knowledge necessary for the accomplishment of the problems in the area of laboratory tasks,
- evaluation of reports performed on laboratory classes,
- rewarding activities related to the implementation of laboratoy classes.

Programme content

Lecture:

Thermal effects of operating and short-circuit currents: heat sources in devices, heating of wires and conductors under the influence of operating currents, warm operation of short-circuit currents, determination of the heating and cooling functions. Dynamic effects of short-circuit currents: analysis of some characteristic conductor systems, resistance of electrical devices and busbars to mechanical exposure. Electric switching arc: electric arc and its quenching, arc model, DC and AC arc characteristics, arc quenching conditions, arc quenching techniques.

Laboratory classes:

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Classes discussing the regulations of the laboratory, topics of laboratory classes and OHS training related to the operation of laboratory positions. To perform 6 two-hour laboratory classes in the field of lecture.

Teaching methods

Lecture:

- multimedia or object-oriented presentations supported by illustrated examples presented on the board,
- interactive lecture with questions and initiating discussions.

Laboratory classes:

- object-oriented presentations supported by illustrated examples presented on the board,
- presentations of selected experiments,
- initiating teamwork.

Bibliography

Basic

- 1. Markiewicz, H. Urządzenia elektroenergetyczne, WNT, Warszawa, 2006.
- 2. Markiewicz, H. Bezpieczeństwo w elektroenergetyce, WNT, Warszawa, 2017.
- 3. Kamińska, A. Urządzenia i stacje elektroenergetyczne, Wydawnictwo Politechniki Poznańskiej, 2000.
- 4. Maksymiuk, J., Nowicki, J. Aparaty elektryczne i rozdzielnice wysokich i średnich napięć, Wydawnictwo Politechniki Warszawskiej, Warszawa, 2014.
- 5. Żmuda, K. Elektroenergetyczne układy przesyłowe i rozdzielcze. Wybrane zagadnienia z przykładami, Wydawnictwo Politechniki Śląskiej, 2014.

Additional

- 1. Glover, J. D., Sarma, M.S., Overbye, T.J. Power System Analysis and Design, cengage Learning, Inc, Florence, KY, US, 2011
- 2. Wasiak, I. Elektroenergetyka w zakresie Przesył i rozdział energii elektrycznej, Politechnika Łódzka, 2010.
- 3. Królikowski, C.,Boruta, Z., Kamińska, A. Technika łączenia obwodów elektroenergetycznych. Przykłady obliczeń, PWN, Warszawa, 1992.
- 4. Maksymiuk, J. Aparaty elektryczne. Podstawy doboru i eksploatacji. WNT, Warszawa, 1977.
- 5. Au, A., Maksymiuk, J., Pochanke, Z. Podstawy obliczeń aparatów elektroenergetycznych. WNT, Warszawa, 1982.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	59	2,0
Classes requiring direct contact with the teacher	44	2,0
Student's own work (literature studies, preparation for	15	1,0
laboratory classes, preparation of reports, preparation for test) 1		

_

 $^{^{\}rm 1}$ delete or add other activities as appropriate